关于增强子,你想知道的都在这里

转自:www.360doc.com-生物_医药_科研

增强子是近期科研领域比较火的一个方向,CNS不断有牛文发表。今天,我们就肿瘤相关的增强子做一个整理,为研究提供方便。

增强子

所谓增强子(Enhancer),位于结构基因附近,是一类非编码DNA顺式作用元件,在真核生物的发育过程中通过结合转录因子、辅因子以及染色质复合物作用于启动子,可以激活或增强基因的转录。简单说:增强子是能够增加启动子活性从而增加基因转录频率的DNA序列。

增强子通常具有以下特点:

① 在转录起始点5'或3'侧均能起作用;② 相对于启动子的任一指向均能起作用;③ 发挥作用与受控基因的远近距离相对无关;④ 对异源性启动子也能发挥作用;⑤通常具有一些短的重复顺序。

增强子分为以下两种类型:

⑴ 细胞特异性增强子:能够在特定的细胞或特定的细胞发育阶段选择性调控基因转录表达的增强子称为细胞特异性增强子。例如,B细胞免疫球蛋白重链基因或轻链基因的增强子,只有在胚胎干细胞分化为B细胞时,才能对Ig基因起正调控作用。此外,α-类和β-类珠蛋白基因簇上游非编码区中均存在红细胞系特异性增强子。

⑵ 诱导性增强子:在特定刺激因子的诱导下,才能发挥其增强基因转录活性的增强子称为诱导性增强子。如激素反应元件(HRE)及金属应答元件(MRE)

什么是超级增强子

除了增强子是调控细胞基因时空表达关键的顺式作用元件外,2013年,Richard A. Young 实验室基于当时增强子的研究,提出了超级增强子(Super-enhancers, SEs)概念[1]。超级增强子是具有转录活性增强子的一个大簇, 富集高密度的关键转录因子(Master transcription factors)、辅因子(Cofactor)和增强子表观修饰标记(Histone modification marks)(见图1)。在功能上超级增强子能够驱动控制细胞身份基因的表达,可以用来解释细胞类型特异的表达模式,在发育生物学、癌症等疾病致病机理研究中显示出巨大的应用潜力[1-4]。胚胎干细胞中的多个转录因子(Oct4、Sox2、Nanog、Klf4、Esrrb、Nr5a2、Prdm14、Tcfcp2l1、Smad3、Stat3、Tcf3)富集在超级增强子上,在之前的研究中发现这些转录因子在胚胎干细胞中起着十分重要的作用。

Richard A. Young曾激动地预言道:“'超级增强子’具有广阔的研发前景和价值,必将成为下一个药物研发的黄金靶点!” 因此开展肿瘤相关超级增强子的研究,将有助深入解开肿瘤发病机制,并且可用于指导抗肿瘤药物的高效研发,具有重要的社会意义和经济价值。

图1.超级增强子及复合物结构示例图[1]

超级增强子的鉴定

目前对增强子鉴定,主要采用染色质免疫共沉淀技术(ChIP-seq) 针对活性增强子相关联的因子或组蛋白修饰进行检测,如转录因子、转录辅激活因子(如Mediator、p300)、组蛋白修饰H3K27ac 和H3K4me1等。活性增强子通常同时含有H3K27ac 和H3K4me1 修饰,而静态增强子(poised enhancer)一般同时具有H3K4me1 和H3K27me3 组蛋白标记[4-6]。在此基础上,超级增强子依据增强子转录活性标记分子结合水平强度的差异进行鉴定。在分析方法上,首先对所得增强子进行缝合。主要依据在基因组范围内,这些单个增强子实体间如在12.5 kb 范围内,则合并为单个实体,即缝合增强子(Stitched enhancer)。最后,确定超级增强子和普通增强子之间的阈值。缝合增强子和其余的单个增强子按照ChIP-seq所测信号水平的强度排序,绘制获得一张曲线图,该曲线上斜率为1 的切线的切点所得的信号值为区分超强增强子和普通增强子之间的阈值,高于该值为超级增强子,其余的则称为普通增强子(Typical enhancer)[1,2]

向洋ฅ聚生物编辑聚生物
温馨提示:当你和其他人给原创帖子点赞时,作者会得到报酬,如果你喜欢阅读这里的内容,请立即创建你的聚生物账户,并开始为你的知识换取价值。

发表评论